Schedule of Accreditation Organisation Name Public Analyst's Laboratory Dublin Trading As Health Service Executive - Public Analyst's Laboratory, Dublin INAB Reg No Contact Name Bernie Bradley / Karen Moore Address Sir Patrick Dun's, Lr. Grand Canal Street, Dublin, D2 99T Contact Phone No 01-661 2022 Email <u>bernadetten.bradley@hse.ie</u> / karen.moore@hse.ie Website http://www.publicanalystdublin.ie Accreditation Standard EN ISO/IEC 17025 T Standard Version 2017 Date of award of accreditation 23/09/1998 Scope Classification Biological and veterinary testing Scope Classification Chemical testing Services available to the public¹ ¹ Refer to document on interpreting INAB Scopes of Accreditation | | Sites from which accredited services are delivered | | | | | | | |---|--|---|--|--|--|--|--| | | (the detail of the accredited services delivered at each site are on the Scope of Accreditation) | | | | | | | | | Name | Address | | | | | | | 1 | Head Office | Sir Patrick Dun's, Lr. Grand Canal Street, Dublin, D2 | | | | | | # Scope of Accreditation ### **Head Office** ### **Biological and Veterinary Testing** Category: A | Biology/veterinary field -
Tests | Test name | Technique | Matrix | Equipment | Std. reference | |--|---|---|--|---|---| | 801 Macroscopic examination and description | SOP PALM 0029
Determination of water
activity in food | Dew point technique | Food | AQUALAB Water
Activity Meter
Series 4TE | ISO 18787:2017 | | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth01 Culture of bacteria | SOP PALM 0001 **3 Enumeration of microorganisms - Aerobic colony count at 30°C for 72 hours SOP PALM 0001 (S) **3 Enumeration of microorganisms - Aerobic colony count at 30°C for 72 hours. | Colony count technique - pour plate method (S) = Surface plate technique - spiral plate method | Dairy products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Fruit and vegetables Prepared dishes Environmental swabs - Stick swabs | Standard | I.S. EN ISO 4833-1:2013/Amd.1:2022 I.S. EN ISO 4833-2:2013 & AC:2014 & Amd.1 2022 | | | SOP PALM 0003(S) **3 Enumeration of presumptive Bacillus cereus using BCA | (S) = Surface plate
technique - spiral
plate method | Dairy products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Cereals and bakery | Standard | Based on ISO 7932:2004/Amd.1:2020
& LC 2020 | | | | T | T | T | |--|----------------------------|--|----------|----------------------------------| | | | products
Fruit and vegetables
Prepared dishes | | | | SOP PALM 0004 **3 Detection of salmonella spp in food | Standard culture method | Dairy products Eggs and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Soups, broths and sauces Cereals and bakery products Fruit and vegetables Herbs and spices Alcoholic beverages (other than wine) — Cream Liqueurs Ices and desserts Confectionery Nuts and nut products Prepared dishes Foodstuffs intended for particular nutritional uses Environmental swabs - Stick swabs | Standard | I.S. EN ISO 6579:2017/Amd.1:2020 | | SOP PALM 0006 **3 Enumeration of Clostridium perfringens in food | Pour plate method | Dairy products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Soups, broths and sauces Fruit and vegetables Prepared dishes | Standard | I.S. EN ISO 7937:2004 | | SOP PALM 0009 **3 Enumeration of | Standard pour plate method | Dairy products
Eggs and egg products | Standard | ISO 21528-2:2017 | | | | <u> </u> | T | | |--|---|--|----------|---| | Enterobacteriaceae by the colony count technique (without resuscitation) | | Meat and meat products, game and poultry Fish, shellfish and molluscs Soups broths and sauces Fruits and vegetables Alcoholic beverages (other than wine) — Cream liqueurs Confectionery Prepared dishes Environmental swabs - Stick swabs | | | | SOP PALM 0017 **3 Detection of Listeria monocytogenes and Listeria spp | Standard culture method | Dairy products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Cereals and bakery products Fruit and vegetables Prepared dishes Environmental swabs - Stick and sponge swabs | Standard | I.S. EN ISO 11290-1:2017 | | SOP PALM 0018(S) **3 Enumeration of Listeria spp and L. monocytogenes | (S) = Surface plate
technique - spread
plate method | Dairy products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Fruit and vegetables Prepared dishes | Standard | I.S. EN ISO 11290-
2:2017 | | SOP PALM 0023 **3
Detection of Campylobacter
spp | Standard culture method | Dairy Products,
Egg and egg products
Meat and meat
products, game and
poultry | Standard | I.S. EN ISO 10272-
1:2017/Amd.1:2023 Version 2.01
Procedure A | | | | Fish, shellfish and
molluscs
Fruit and vegetables
Prepared dishes
Surfaces - Stick Swabs | | | |---|---|--|----------|--| | SOP PALM 0026 **3 Enumeration of β- glucuronidase positive E.coli by colony count at 44°C using TBX | Standard pour plate method | Dairy products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Soups, Broths and Sauces Confectionery Cereals and bakery products Cocoa and cocoa preparations, coffee and tea Prepared dishes Environmental swabs - Stick Swabs Fruit and vegetables | Standard | ISO 16649-2:2001 | | SOP PALM 0027 Enumeration of β- glucuronidase positive Escherichia coli by Most Probable Number (MPN) technique **3 | MPN technique,
direct culture | Fish, shellfish and molluscs | Standard | I.S. EN ISO 16649-3:2015/Corr.2016 | | SOP PALM 0028 **3 Detection and enumeration of Vibrio parahaemolyticus | Detection method:
standard culture
method Enumeration
method: Surface
plate technique -
spread and spiral
plate method | Fish, shellfish and molluscs | Standard | Based on ISO 21872-
1:2017/Amd.1:2023 | | SOP PALM 0061 **3
Enumeration of coagulase- | Standard pour plate method | Egg and egg products
Meat and meat
products, game and | Standard | I.S. EN ISO 6888-2:2021 | | positive Staphylococci by
RPF technique | | poultry Fish, shellfish and molluscs Soups, broths and sauces Cereals and bakery products Fruit and vegetables Prepared dishes | | | |--|----------------------------|--|--|--| | SOP PALM 0102 Detection and enumeration of Enterococci in water by membrane filtration | Membrane
filtration | Potable waters
Swimming pools and
spas
Environmental waters | Membrane filtration
manifold and
associated
standard
equipment | Based on I.S. EN ISO 7899-2:2000 | | SOP PALM 0104 Detection and enumeration of Sulphite Reducing Clostridia and Clostridium perfringens in water | | Potable waters
Swimming pools and
spas
Environmental waters | Membrane filtration
manifold and
standard
associated
equipment | Based on Microbiology of
Drinking Water 2021, Part 6 | | SOP PALM 0106 Detection and enumeration of Pseudomonas aeruginosa in water | | Swimming pools and spas Potable Waters |
Membrane filtration
manifold and
associated
standard
equipment | Based on Microbiology of
Drinking Water (2015), Part 8,B and
Microbiology of Recreational and
Environmental Water (2015) Part 7,C | | SOP PALM 0107
Enumeration of heterotrophic
bacteria -colony count
technique at 22°C or 37°C | Standard pour plate method | Potable waters
Swimming pools and
spas | Standard | Based on I.S. EN ISO 6222:1999 | | SOP PALM 0108 Enumeration of Coliforms and E. coli in water using Colilert IDEXX Quanti-Tray™ MPN | MPN method | Environmental waters
Potable waters
Swimming pools and
spas | Standard | ISO 9308-2:2012 | | SOP PALM 0111 Detection and enumeration of Coliforms and E.coli in | Membrane filtration | Potable waters | Membrane filtration manifold and | ISO 9308-1:2014 /AMD.1:2016 | | water with low bacterial background flora by membrane filtration | | | associated
equipment | | |---|--|--|--|--| | SOP PALM 0112
Enumeration of Legionella in
water | | Potable waters | Membrane filtration
manifold and
associated
equipment | ISO 11731:2017, Membrane filtration on plate: procedures 5 and 7. Filtration with washing procedures 8 and 9 | | SOP PALM 3000
Enumeration of Aerobic
Mesophilic Bacteria in
cosmetic products | Standard pour plate method | Cosmetic products
Impregnated/coated
wipes and masks | Standard
Microbiological
Equipment | ISO 21149:2017/Amd 1:2022 | | SOP PALM 3001 Detection of Pseudomonas aeruginosa in cosmetic products | Standard culture method | Cosmetic products
Impregnated/coated
wipes and masks | Standard
Microbiological
Equipment | ISO 22717:2015/Amd 1: 2022 | | SOP PALM 3002 Detection of Staphylococcus aureus in cosmetic products | | Cosmetic products
Impregnated/coated
wipes and masks | Standard
Microbiological
Equipment | ISO 22718:2015/Amd 1:2022 | | SOP PALM 3006 Detection of Escherichia coli in cosmetic products | | Cosmetic products
Impregnated/coated
wipes and masks | Standard
microbiological
equipment | ISO 21150:2015/Amd 1:2022 | | SOP PALM 4001 **3 Detection of Salmonella spp. using an automated enzyme- linked fluorescent immunoassay system (VIDAS) | Elfa Detection
using VIDAS SLM
Kit | Dairy Products Egg and egg products Meat and meat products, game and poultry Fish, shellfish and molluscs Soups, broths and sauces Cereals and bakery products Fruit and vegetables Herbs and spices Alcoholic beverages other than wine (Cream liqueur) Ices and desserts Confectionery Nuts and nut products Prepared dishes Environmental swabs - | Biomerieux VIDAS
system | AFNOR VIDAS Salmonella (VIDAS SLM) method BIO 12/1-04/94 Screening method. Cultural and confirmation aspects - I.S. EN ISO6579:2017/Amd.1:2020 | | | | | Stick swabs
Foodstuffs intended for
particular nutritional
uses | | | |--|---|---|---|--|---------------------------| | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth02 Culture of fungi | SOP PALM 0025 **3 Enumeration of yeasts and moulds in products with water activity greater than 0.95 | Standard plate
count - spread
plate method | Cereals and bakery products Fruit and vegetables Non-alcoholic beverages Soups, broths and sauces Alcoholic beverages (other than wine) | Standard | ISO 21527-1:2008 | | | SOP PALM 0080 **3 Enumeration of yeasts and moulds in products with water activity less than or equal to 0.95 | | Cereals and bakery products | Standard | ISO 21527-2:2008 | | | SOP PALM 3003
Enumeration of Yeasts &
Mould in Cosmetic Products | Standard pour plate method | Cosmetic products
Impregnated/coated
wipes and masks | Standard
Microbiological
Equipment | ISO 16212:2017/Amd.1:2022 | | | SOP PALM 3007
Detection of Candida
albicans in cosmetic
products | Standard culture method | Cosmetic products
Impregnated/coated
wipes and masks | Standard
microbiological
equipment | ISO 18416:2015/Amd 1:2022 | | 803 Culture of organisms in liquid or agar based culture media with visual or instrument monitoring for growth04 Culture of yeasts | SOP PALM 0025 **3 Enumeration of yeasts and moulds in products with water activity greater than 0.95 | Standard plate
count - spread
plate method | Cereals and bakery products Fruit and vegetables Non alcoholic beverages Soups, broths and sauces Alcoholic beverages (other than wine) | Standard | ISO 21527-1:2008 | | | SOP PALM 0080 **3 Enumeration of yeasts and moulds in products with water activity less than or equal to 0.95 | Standard plate
counts - spread
plate method | Cereals and bakery products | Standard | ISO 21527-2:2008 | | SOP PALM 3003 | Standard pour | Cosmetic products | Standard | ISO 16212:2017/Amd 1:2022 | |------------------|------------------------|--------------------|-----------------|---------------------------| | Enumeration of Y | easts and plate method | Impregnated/coated | Microbiological | | | Moulds in cosme | ic products | wipes and masks | Equipment | | ## **Head Office** # **Chemical Testing** ### Category: A | Chemistry Field -
Tests | Test name | Analyte | Range of measurement | Matrix | Equipment/technique | Standard reference/SOP | |---|--|--|---|---|---------------------------------------|--| | 710 Materials testing03 Chemical analysis | | Metals | Unchanged | Food contact
material –
Plastic Kitchen
Ware | ICP-MS | SOP PALC 0171 | | | SOP PALC 0117 -
The determination of
the specific migration
of formaldehyde from
kitchenware by UV/Vis
spectrophotometry
**1 2 3 4 | Residual formaldehyde | 3.0 to 30.0 mg/kg Food simulant (analysed in 3% acetic acid solution, results obtained must be corrected for the surface area of the individual article under analysis) | Melamine
kitchenware | UV/Vis
spectrophotometry | Based on the
determination of
formaldehyde in food
simulants I.S. CEN/TS
13130-23:2005 | | | SOP PALC 0039 -
The determination of
Epoxidised Soybean
Oil in Food, Food
simulant and PVC
Gasket
**1 2 3 4 | Epoxidised soybean oil (ESBO) | 3.0 % to 50 % w/w | PVC Gasket | GC-MS | In-house procedure
based on Castle, L.,
Sharman, M., and
Gilbert, J. A.O.A.C.
No.6., 71, 1183-1186 | | | SOP PALC 0089 - The determination of bisphenol A in food contact materials and foodstuffs by HPLC and fluorescence detection **1 2 3 4 | Bisphenol A | 1 to 1000 µg/kg (analysed in 50% aqueous ethanol food simulant, results obtained must be corrected for the surface area of the individual article under analysis) | Food Contact
Materials | HPLC and
Fluorescence
Detection | In house test procedure | | | Oil Food Simulant and | Plasticisers: diisooctyl phthalate (DIOP), diisononyl cyclohexanedicarboxylate (DINCH), diisononyl | 0.02 to 35 % w/w | PVC | GC-MS | In-house test method | | | phthalate (DINP),
diisodecyl phthalate
(DIDP) | | | | | |--|--|--|-----------------------------|------------|-------------------------| | | Plasticisers: dimethyl adipate (DMA), diethyl adipate (DEA), dimethyl phthalate (DMP), diethyl phthalate (DEP), dimethyl sebacate (DMS), triethylcitrate (TEC), diethyl sebacate (DES), diisobutyl
phthalate (DIBP), dibutyl phthalate (DBP), dibutyl phthalate (DHP), benzyl butyl phthalate (BBP), dicyclohexyl phthalate (DCHP), diethylhexyl phthalate (DEHP), dioctyl terephthalate (DCHP), diethylhexyl phthalate (DOTP/DETP), diallyl phthalate (DAP), diethyl sebacate (DES), dibutyl sebacate (DBS), tributylacetylcitrate (TBAC), diethylhexyl adipate (DEHA) di-n-octyl phthalate (DNOP) and diethylhexyl sebacate (DEHS) | 0.005 to 35 % w/w | PVC | GC-MS | In-house test procedure | | SOP PALC 0092 - The determination of the specific migration of primary aromatic amines (PAAs) from plastic kitchen utensils by UPLC-electrospray ionisation-tandem MS/MS **1 2 3 4 | (4,4'-methylenedianiline) | 0.1 to 1,000,000 µg/kg for 2,4-Diaminoanisole 4,4'-Oxydianiline Aniline o-Anisidine (2-methoxyaniline) o-Toluidine (2-aminotoluene) 4,4'-Methylene-bis(2-methylaniline) o-Dianisidine (3,3'- | Plastic Kitchen
Utensils | UPLC-MS/MS | In-house test procedure | | 2
2
2
2
2
2
2
2
2 | 4,4'-Methylene-bis(2-methylaniline) o-Dianisidine (3,3'-dimethoxybenzidine) 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5-methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | dimethoxybenzidine) 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | |--|---|---|--|--| | r
0
2
2
2
2
2
2
2
2 | methylaniline) o-Dianisidine (3,3'- dimethoxybenzidine) 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | C
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | o-Dianisidine (3,3'- dimethoxybenzidine) 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | 2
2
2
7 | dimethoxybenzidine) 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | 2
2
1
2
2 | 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | 2
2
1
2
2 | 2,4 Dimethylaniline 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | 2
1
2
2 | 2,4-Diaminotoluene 2-Methoxy-5- methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | 2
1
2
2 | 2-Methoxy-5-methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl 4-Chloro-2-methylaniline | | | | r
2
2 | methylaniline 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 4,4'-Diaminodiphenyl
sulphide
2-Naphthylamine
4-Aminobiphenyl
4-Chloro-2-methylaniline | | | | 2 | 4-Chloroaniline 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | sulphide
2-Naphthylamine
4-Aminobiphenyl
4-Chloro-2-methylaniline | | | | 2 | 2,4,5-Trimethylaniline 2,6 Dimethylaniline 4,4'-Diaminodiphenyl sulphide 2-Naphthylamine 4-Aminobiphenyl | 2-Naphthylamine
4-Aminobiphenyl
4-Chloro-2-methylaniline | | | | 2 | 2,6 Dimethylaniline
4,4'-Diaminodiphenyl
sulphide
2-Naphthylamine
4-Aminobiphenyl | 4-Aminobiphenyl
4-Chloro-2-methylaniline | | | | | 4,4'-Diaminodiphenyl
sulphide
2-Naphthylamine
4-Aminobiphenyl | 4-Chloro-2-methylaniline | | | | | sulphide
2-Naphthylamine
4-Aminobiphenyl | · | | | | | 2-Naphthylamine
4-Aminobiphenyl | 0.2 to 1.000.000 µg/kg | | | | | 4-Aminobiphenyl | 0.2 to 1.000.000 µg/kg | | | | | | | | | | | | for | | | | | 2-Methyl-5-nitroaniline | 4,4'- | | | | | | Diaminodiphenylmethane | | | | | | | | | | | 3,3'-Dichlorobenzidine | (4,4'-methylenedianiline)
4,4'-Benzidine | | | | | | o-Tolidine | | | | | | | | | | | | 4-Aminoazobenzene | | | | | , (, | 3,3'-Dichlorobenzidine | | | | | dichloro-4,4'-methylene- | (3,3'-dichlorobiphenyl- | | | | | | 4,4'-ylenediamine) | | | | | | 4,4'-Methylene-bis-(2- | | | | | | chloroaniline) (2,2'- | | | | | | dichloro-4,4'-methylene- | | | | [7 | | dianiline) | | | | | | o-Aminoazotoluene (4- | | | | | | amino-2',3- | | | | | | dimethylazobenzene) | | | | | | | | | | | | 0.5 to 1,000,000 μg/kg | | | | | | 1,4-Phenylenediamine | | | | | | 2-Methyl-5-nitroaniline | | | | | | | | | | | | *Total PAAs: | | | | | | | | | | | | (*Note: based on lower | | | | | | bound calculation) | | | | | | 2-Methyl-5-nitroaniline
*Total PAAs:
0 to 26,000,000 µg/kg | | | | SOP PALC 0094 - The determination of the specific migration of melamine from kitchenware by UPLC- electrospray ionisation-tandem MS/MS **1 2 3 4 | Residual melamine | 0.25 to 250 mg/kg food simulant (analysed as 3% acetic acid solution, results obtained must be corrected for the surface area of the individual article under analysis) | Melamine
kitchenware | UPLC-MS/MS | Based on I.S.EN13130-
1:2004 | |--|---------------------|--|----------------------------|------------|---------------------------------| | SOP PALC 0112 - The determination of the migration of cadmium and lead from ceramic and glass articles by Inductively Coupled Plasma Mass Spectroscopy **1 2 3 4 | Lead and Cadmium | Ceramics: 0.2 to 40.0 mg/l (lead) 0.02 to 2.0 mg/l (Cadmium)(Analysed as 4% Acetic Acid solution, results obtained must be corrected for surface area of the individual non fill article under analysis). Glass articles: 0.003 to 0.20 mg/litre - Lead and Cadmium(analysed as 4% Acetic Acid, results obtained must be corrected for surface area of the individual non fill article under analysis) | Ceramics
Glass articles | By ICP-MS | In-house test procedure | | SOP PALC 0123 The determination of the specific migration of chromium and nickel from metal kitchen utensils by ICPMS **1 2 3 4 | Chromium and Nickel | Chromium 20 - 2000 µg/l
Nickel 10 - 1000 ug/l
(Analysed as 4% Acetic
acid, results obtained
must be corrected for the
surface area of the
individual article under
analysis) | Metal kitchen
utensils | ICP-MS | In-house test procedure | | SOP PALC 0171 -
The determination of
the specific migration
of metals from plastic
kitchen ware by
ICPMS **1 2 3 4 | Aluminium
Nickel | Aluminium: 0.025 to 1.50 mg/kg Nickel: 0.003 to 0.15 mg/kg (Analysed as 3% Acetic acid, results obtained must be corrected for the surface area of the individual article under analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | | | 0.100 to 6.0 mg/kg (Analysed as 3% Acetic acid, results obtained must be corrected for the surface area of the individual article under analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | |--|--|-------------------------|--------|----------------------| | | 1.000 to 60.0 mg/kg
(Analysed as 3% Acetic
acid, results obtained
must be corrected
for the
surface area of the
individual article under
analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | | | 0.025 to 1.50 mg/kg
(Analysed as 3% Acetic
acid, results obtained
must be corrected for the
surface area of the
individual article under
analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | | | 0.025 to 1.50 mg/kg
(Analysed as 3% Acetic
acid, results obtained
must be corrected for the
surface area of the
individual article under
analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | | | 0.100 to 6.0 mg/kg (Analysed as 3% Acetic acid, results obtained must be corrected for the surface area of the individual article under analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | | SOP PALC 0171 The determination of the specific migration of metals from plastic kitchen ware by ICPMS **1 2 3 4 | 0.025 - 1.50 mg/kg
(Analysed as 3% Acetic
acid, results obtained
must be corrected for the
surface area of the
individual article under
analysis) | Plastic kitchen
ware | ICP-MS | In-house test method | | | | 4 | | | | | |---|---|---|---|-------------------------------------|---------------|--| | | SOP PALCW 0024 The determination of the strength of hexafluorosilicic acid **1 2 3 4 | Hexafluorosilicic Acid
(HFSA) | HFSA in Aqueous
solution (10 - 35%) | Misc Materials
and products | By titrimetry | Based on I.S. EN
12175:2022 | | 9 | SOP PALC 0039 -
The determination of
Epoxidised Soybean
Oil in Food, Food
simulant and PVC
Gasket
**1 2 3 4 | Epoxidised soybean oil (ESBO) | 3 to 1000mg/kg | Jarred foods including infant foods | | In-house test procedure
based on Castle, L.,
Sharman, M., and
Gilbert, J. A.O.A.C.
No.6., 71, 1183-1186 | | | | | 30 to 12000 mg/kg | Food Simulant | | In-house test procedure
based on Castle, L.,
Sharman, M., and
Gilbert, J. A.O.A.C.
No.6., 71, 1183-1186 | | | SOP PALC 0116 -
The determination of
photo initiators in
packaging and food
by GC-MS
**1 2 3 4 | Photoinitiators Benzophenone (BP) Isopropylthioxanthone (ITX) | Food: 0.06 to 100.0
mg/kg Packaging: 0.2 to
450 mg/dm2 | Food and Food
Packaging | | In-house test procedure based on Thermo scientific application note 'Analysis of benzophenone and 4-hydroxybenzophenone in breakfast cereal, 2012' | | | SOP PALC 0119 - The determination of certain perfluoroalkylated substances in fish by UPLC-electrospray ionisation-tandem MS/MS **1 2 3 4 | (PFPeA) | 1 to 100 µg/kg for each analyte, *Sum of PFOS, PFOA, PFNA, PFHxS 0 to 400 µg/kg (*Note: based on lower bound calculation) | Fish | UPLC-MS/MS | In-house test procedure | | | Perfluorodec anoic acid (PFDeA) Perfluoroundecanoic acid (PFUnA) Perfluorodecane sulfonic acid (PFDS) Perfluorododecanoic acid (PFDoA) Perfluorotetradecanoic acid (PFTrA) Sum of PFOS, PFOA, PFNA and PFHxS | | | | | |--|--|---------------|------|------------------|-------------------------| | SOP PALC 0181 - The determination of plasticisers in food by LC-MS/MS *1 2 3 4 | Dimethyl sebacate (DMS) Diethyl sebacate (DES) Dibutyl sebacate (DBS) Dimethyl phthalate (DMP) Diethyl phthalate (DEP) | and BBP) | Food | LC-MS/MS | In-house test procedure | | The determination of styrene in food and packaging by HS-SPME-GC-MS/MS | Styrene | 1 - 250 μg/kg | Food | HS-SPME-GC-MS/MS | SOP PALC 0191 | | 751 Food testing03
Compositional
analysis | The determination of caffeine in foodstuffs by HPLC with UV detection | Caffeine | 20 - 1,200 mg/L | Liquid Matrices | HPLC/PDA | SOP PALC 0025 | |---|---|--|---|--|--|---| | | The determination of coumarin in foodstuffs by gradient HPLC with UV detection | | 1 - 100 mg/kg | Food | HPLC/PDA | SOP PALC 0121 | | | SOP PALC 0001 -The determination of percentage alcohol by volume in drinks **1 2 3 4 | drinks | 2.5 - 70% v/v | Wine
Alcoholic
beverages
(other than
wine) | Distillation and electronic densimetry | Based on Commission Regulation (EC) No. 2870/2000 of 19/12/2000, as amended, laying down Community reference methods for analysis of spirit drinks. | | | SOP PALC 0005 - The determination of fructose, glucose and sucrose in selected food and drink samples by UPLC or HPLC with RI detection **1 2 3 4 | Fructose, glucose, sucrose, total sugars | Honey: Fructose: 5.0-50.0% w/w Glucose: 5.0-50.0% w/w Sucrose: 5.0-50.0% w/w *Total Sugars 0-80.0% w/w (*Note: based on lower bound calculation) Juices: Fructose: 0.1-10.0% w/v or g/100mL Glucose: 0.1-10.0% w/v or g/100mL *Total Sugars 0-30.0% w/v or g/100mL Other drinks: Fructose: 0.1-20.0% w/v or | Honey, Juices,
Other Drinks | UPLC or HPLC with
Refractive Index
detection | In-house test procedure | | | | | g/100mL
Glucose: 0.1-20.0% w/v
or g/100mL
Sucrose: 0.1-20.0% w/v
or g/100mL | | | | | | | *Total Sugars 0-60.0%
w/v or g/100mL
(*Note: based on lower
bound calculation) | | | | |--|------------------------------|--|---|-----------------------------|-------------------------| | SOP PALC 0008 -
The determination of
benzoic acid and
sorbic acid in non-
alcoholic beverages
by high performance
liquid chromatography
**1 2 3 4 | Benzoic acid and sorbic acid | Benzoic acid 10 - 1000
mg/l Sorbic acid 10 -
1000 mg/l | Non-alcoholic
beverages | HPLC | In-house test procedure | | SOP PALC 0009 -
The determination of
benzoic acid and
sorbic acid in foods by
steam distillation and
high performance
liquid chromatography
**1 2 3 4 | | Benzoic acid 50 - 3000
mg/kg Sorbic acid 50 -
4000 mg/kg | Dairy products Fats and Oils Soups broths and sauces Cereals & bakery products Fruit and vegetables Confectionery Hummus and similar products | Steam distillation and HPLC | In-house test procedure | | SOP PALC 0011 - The determination of sulphur dioxide in food and beverages by distillation and titrimetry **1 2 3 4 | Sulphur dioxide | Meat products 10 - 1000 mg/kg Dried fruit 10 - 2000mg/kg Wine 10 - 160 mg/l Raw potatoes 10 - 1000 mg/kg Raw crustaceans 10 - 300 mg/kg Cider 10 - 200mg/l Cordials 10 - 250 mg/l Parsnips 10 - 3000 mg/kg Beer 10 - 50 mg/l Olives 10 - 100 mg/kg Additive premixes 10 - 25000 mg/kg Jam/Dessert Syrup/ fruit | Meat and meat products, game and poultry Fish, Shellfish and molluscs Fruit and vegetables Non-alcoholic beverages Wine Alcoholic beverages (other than wine) | Distillation and titrimetry | In-house test procedure | | SOP PALC 0015 -
The determination of | Nitrate | filling for pastry: 10 - 400 mg/kg 50 - 7500 mg/kg | Olives Additive premixes Jam/Dessert Syrup/ fruit filling for pastry Fruit and vegetables | Anion exchange HPLC | In-house test procedure | |--|---|--|---|---------------------------------|-------------------------| | nitrate in vegetables
by anion exchange
high performance
liquid chromatography
**1 2 3 4 | | | regetables | | | | SOP PALC 0016 - The determination of aspartame, acesulfame-K and
saccharin in non- alcoholic beverages by high performance liquid chromatography **1 2 3 4 | Aspartame, acesulfame-
K
and saccharin | Aspartame 40 – 800 mg/l
Acesulfame-K 20 – 400
mg/l Saccharin 10 – 200
mg/l | Non-alcoholic
beverages | UPLC | In-house test procedure | | SOP PALC 0017 - The determination of biogenic amines in fish and fish products by HPLC and fluorescence detection **1 2 3 4 | Biogenic Amines (Tyramine, putrescine, cadaverine, histamine, agmatine, phenyethylamine, spermidine and spermine) | Tyramine: 10 to 1000 mg/kg (1) 10 to 4000 mg/kg (2) Putrescine: 10 to 1000 mg/kg (1) 10 to 4000 mg/kg (2) Cadaverine: 10 to 1000 mg/kg (1) 10 to 4000 mg/kg (2) Histamine:10 to 1000 mg/kg (2) Histamine:10 to 1000 mg/kg (2) Agmatine: 10 to 1000 mg/kg (1) 10 to 4000 mg/kg (2) Phenyethylamine: 10 to 1000 mg/kg (2) Spermidine: 10 to 1000 mg/kg (1) 10 to 4000 mg/kg (2) Spermidine: 10 to 1000 mg/kg (2) Spermine:10 to | 1. Fish, shellfish and fish products inc molluscs 2. Soups (fish), broths and sauces | HPLC and fluorescence detection | In-house test procedure | | | | 1000 mg/kg (1) 10 to
4000 mg/kg (2) | | | | |--|---|---|---|-------------------------------------|-------------------------| | SOP PALC 0025 -
The determination of
caffeine in
foodstuffs by HPLC
and UV detection
**1 2 3 4 | Caffeine | Instant Coffee 0.1 - 5 g/kg Liquid Samples 20 - 2000 mg/l Solid and liquid food supplements: Solid tablet 25,000 - 500,000mg/kg Powder 3,000 - 20,000 mg/kg Gel/liquid 10 - 6,000 mg/kg Capsule 10,000 - 500,000 mg/kg | Non-alcoholic
beverages
Cocoa and
Cocoa
preparations,
coffee,
tea.
Food
Supplements | HPLC and UV
detection | In-house test procedure | | SOP PALC 0026 -
The determination of
sucralose by HPLC
and RI detection
**1 2 3 4 | Sucralose | Alcoholic and non-alcoholic beverages 5 to 300 mg/l Yoghurts 40 to 800 mg/kg Jams and dessert jellies 40 to 800 mg/kg Sauces 40 to 800 mg/kg Confectionery: 200 mg/kg to 2,000 mg/kg Popcorn: 100 to 400 mg/kg Pine bakery wares: 60 to 400 mg/kg Meat products: 30 to 150 mg/kg Total Diet Replacement Products: 40 to 400 mg/kg | Dairy products Non-alcoholic beverages Alcoholic beverages (other than wine) Ices and desserts Sauces, jams and desserts Confectionery Syrups Popcorn Fine bakery wares, Meat products, Total Diet Replacement Products | HPLC and refractive index detection | In-house test procedure | | SOP PALC 0028 - The determination of nitrite and nitrate (expressed as sodium nitrite and sodium nitrate) in meat and meat products and curing brines by anion-exchange high | Nitrite and nitrate (expressed as sodium nitrite and sodium nitrate for all matrices other than processed cereal-based foods and baby foods for infants and young children) | Meat and meat products, game and poultry: 10 - 1,000 mg/kg Brines: 100 - 2,500 mg/kg, Processed cereal-based foods and baby foods for infants and young children: 20 - 300 mg/kg, cheese: 10 - 400 mg/kg, | Meat and meat
products, game
and
poultry
Brines,
Processed
cereal-based
foods and baby
foods for infants | Anion exchange
HPLC | In-house test procedure | | performance liquid
chromatography **1 2
3 4 | | cheese milks 5 - 100
mg/kg, tuna 5 - 50 mg/kg | and young
children,
cheese, cheese
milks, tuna | | | |--|---------------------------------------|--|---|--------------------------|-------------------------| | SOP PALC 0054 - The determination of aspartame, acesulfame-K and saccharin in selected foodstuffs by ultra performance liquid chromatography **1 2 3 4 | Aspartame, acesulfame-K and saccharin | Dairy products, Soups, broths and sauces, Ices, desserts and Confectionery: Aspartame 40 to 1000 mg/kg Acesulfame-K 10 to 1000 mg/kg Saccharin 10 to 200 mg/kg Chewing Gum: Aspartame: 500 to 10,000 mg/kg Acesulfame K: 250 to 5,000 mg/kg Saccharin: 120 to 2,500 mg/kg Chocolate powder type products: Aspartame: 40 to 800 mg/kg Acesulfame K: 20 to 400 mg/kg Saccharin: 10 - 200 mg/kg Fine Bakery Wares Aspartame: 80 to 400 mg/kg Acesulfame K: 40 to 400 mg/kg Saccharin: 20 to 200 mg/kg Meat Products: Aspartame: 80 to 400 mg/kg Acesulfame K: 10 to 50 mg/kg Saccharin: 5 to 25 mg/kg Total Diet replacement Products: Aspartame: 80-800 mg/kg Acesulfame K: 40-400 mg/kg Saccharin: 20-200 mg/kg Saccharin: 20-200 mg/kg Saccharin: 20-200 mg/kg Saccharin: 20-200 mg/kg | | UPLC and UV
Detection | In-house test procedure | | SOP PALC 0057 -
The determination of
the 5-
hydroxymethylfurfural | 5-hydroxymethylfurfural
(HMF) | 10 to 2166 mg/kg | Honey | HPLC with UV detection | In-house test procedure | | (HMF) content of
honey by HPLC with
UV detection
**1 2 3 4 | | | | | | |--|--|---|--|---|-------------------------| | SOP PALC 0086 -
The determination of
the water content of
honey by refractive
index using a hand-
held refractometer
**1 2 3 4 | Moisture | 10.0 to 30.0% | Honey | Refractometer | In-house test procedure | | SOP PALC 0091 -
The determination of
melamine in foodstuffs
by UPLC-electrospray
ionisation-tandem
MS/MS
**1 2 3 4 | Melamine | Milk powder: 0.025 to
15.0 mg/kg | Milk powder | UPLC-MS/MS | In-house test procedure | | SOP PALC 0113 -
The determination of
the diastase activity of
honey with
Phadebas® by UV/Vis
spectrophotometry
**1 2 3 4 | Diastase number | 2.5 to 30.0 Diastase number | Honey | Phadebas with UV/Vis
Spectrophotometry | In-house test procedure | | SOP PALC 0121 - The Determination of Coumarin in Foodstuffs by Gradient High Performance Liquid Chromatography with UV Detection **1 2 3 4 | Coumarin | Bakery products: 1 to
100 mg/kg Breakfast
cereals: 2 to 50 mg/kg
Food Supplements
(Liquid): 2.5 to 50 mg/kg
Food Supplements
(Solid): 5 to 15,000
mg/kg Confectionery: 10
to 50 mg/kg | Cereals and bakery products Food supplements (liquid) Food supplements (solid) Confectionery | HPLC with UV
detection | In-house test procedure | | SOP PALC 0128 -
The Determination of
Selected Antioxidants
in Foodstuffs by
Gradient High
Performance Liquid | Propyl gallate Tertiary- butylhydroquinone (TBHQ) Butylated hydroxyanisole (BHA) | Chewing gum (20 to 800 mg/kg) Nut Products (4 to 80 mg/kg) Cereals (Range (4 to 200 mg/kg) Oil food supplements (20 to 800 mg/kg) Soup/ Sauce (5 mg/kg - 40 | Chewing gum
Nut Products
Cereals
Oil food
supplements,
Soup/Sauce | Gradient high performance liquid chromatography with UV detection | In-house test procedure | | Chromatography **1 2 3 4 | Butylated hydroxytoluene
(BHT | mg/kg equivalent to 25-
200mg/kg expressed on
fat for a product with
20% fat) | | | | |--|--|--|---|---------------------------|-------------------------| | SOP PALC 0134 - The determination of citrinin (CIT) in red yeast rice supplements by ultra performance liquid chromatography (UPLC) and tandem mass spectrometry (MS/MS) **1 2 3 4 | Citrinin | 25 to 4,000 μg/kg | Food
supplements
based on rice
fermented with
red
yeast
Monascus
purpureus | UPLC-MS/MS | In-house test procedure | | SOP PALC 0135 - The Determination of Steviol Glycosides (Rebaudioside A & Stevioside) in foodstuffs by gradient high performance liquid chromatography with UV detection | Steviol Glycosides
(Rebaudioside A and
Stevioside) | Rebaudioside A: 10 to
400 mg/l (3.3 to 132 mg/l
steviol equivalents)
Stevioside: 10 to 400
mg/l (4 to 160 mg/l
steviol equivalents) | Non-alcoholic
beverages
See SOP PALC
0149 for solid
food analysis | By HPLC/PDA | In-house test procedure | | SOP PALC 0137 -
The Determination of
Quassin in Beverages
by High Performance
Liquid
Chromatography
**1 2 3 4 | Quassin | 0.05 to 1.0 mg/kg
0.15 to 2.5 mg/kg | Non-alcoholic
beverages
Alcoholic
beverages
See SOP PALC
0153 for solid
food analysis | By HPLC | In-house test procedure | | SOP PALC 0138 - The Determination of Taurine in Infant Formula and Follow- On Formula by High Performance Liquid Chromatography with UV Detection **1 2 3 4 | Taurine | 5 to 100 mg/L | Infant formula
and Follow on
formula | By HPLC with UV detection | In-house test procedure | | SOP PALC 0139 - The determination of tropane alkaloids in cereal and cereal products by UPLC- electrospray ionisation-tandem MS/MS **1 2 3 4 | Tropane alkaloids (TAs)
(Atropine and
Scopolamine) | Atropine: 0.1 to 250 μg/kg
Scopolamine: 0.1 to 25 μg/kg | Cereal based
baby food | UPLC-MS/MS | In-house test procedure | |---|--|--|--|------------|-------------------------| | SOP PALC 0143 - The determination of 1,3-Dihydroxyacetone (DHA), Methylglyoxal (MGO) and Hydroxymethylfurfural (HMF) in honey by derivatisation and Ultra High Performance Liquid Chromatography (UPLC) with UV detection **1 2 3 4 | 1,3-Dihydroxyacetone (DHA), Methylglyoxal (MGO), Hydroxymethylfurfural (HMF) | Hydroxymethylfurfural
(HMF) 3 to 250 mg/kg
Methylglyoxal (MGO) 16
to 640 mg/kg 1,3-
Dihydroxyacetone (DHA)
50 to 3,200 mg/kg | Honey | UPLC-UV | In-house test procedure | | SOP PALC 0149 - The determination of Steviol Glycosides (Rebaudioside A & Stevioside) in foodstuffs by gradient high performance liquid chromatography with UV detection **1 2 3 4 | Steviol Glycosides
(Rebaudioside A and
Stevioside) | Chocolate: Rebaudioside A: 60 to 1,500 mg/kg (20 - 500 mg/kg steviolequivalents) Stevioside: 60 to 1,100 mg/kg (24 to 440 mg/kg steviol equivalents) Other Confectionery: Rebaudioside A: 80 to 2,000 mg/kg (26 to 660 mg/kg steviol equivalents) Stevioside: 80 to 2,000 mg/kg (30 to 800 mg/kg steviol equivalents) Sauces and Canned Vegetables in sauce: Rebaudioside A: 37 to 750 mg/kg (12 to 250 mg/kg expressed as steviol | Chocolate Other confectionery Sauces Canned vegetables in sauce Ice cream See SOP PALC 0135 for non- alcoholic beverage analysis | By HPLC | In-house test procedure | | | | equivalents)Stevioside: 40 to 600 mg/kg (16 to 240 mg/kg expressed as steviol equivalents) Ice cream: Rebaudioside A: 40 to 640 mg/kg (15 to 210 mg/kg expressed as steviol equivalents) Stevioside: 35 to 625 mg/kg (15 to 250 mg/kg expressed as steviol equivalents) | | | | |--|---|---|---|-------------------------------------|-------------------------| | SOP PALC 0151 -
The determination of
fructose, glucose and
sucrose in spirit drinks
by HPLC with ECD
detection
**1 2 3 4 | Fructose, glucose,
sucrose, total sugars | Fructose: 5 to 1000 mg/l
Glucose: 5 to 1000 mg/l
Sucrose: 5 to 1000 mg/l
*Total Sugars: 0 to 3000
mg/l (*Note: based on
lower bound calculation) | Alcoholic
beverages
Spirits | HPLC with electrochemical detection | In-house test procedure | | SOP PALC 0153 - The determination of Quassin in Bakery Wares by High Performance Liquid Chromatography **1 2 3 4 | Quassin | 0.1 to 2.0 mg/kg | Bakery wares
See SOP PALC
0137 for
non-alcoholic
beverage
analysis | HPLC -UV | In-house test procedure | | SOP PALC 0154 The determination of congeners in alcoholic beverages **1 2 3 4 | Congeners in alcoholic beverages | Ethanal, Ethyl Acetate, Acetal, (Range:10 mg/l - 250 mg/l, or, 2.5 - 62.5 g/h L @ 100% vol) Methanol, Butan-2-ol, Propan-1-ol, Butan-1-ol, 2-methyl propan-1-ol, 3-methyl butan-1-ol, (Range: 10 mg/l - 750 mg/l, or, 2.5 – 187.5 g/h L @ 100% vol) Higher alcohols (sum of propan-1-ol, butan-1-ol, butan-2-ol, 2-methyl | Alcoholic
beverages
- spirits | By GC | In-house test procedure | | | | propan-1-ol, 2-
methylbutan-1-ol, 3-
methyl butan-1-ol
expressed as 2-methyl
propan-1-ol) (Range: 2.1
- 1,109 g/hL @ 100%
vol)
Aldehydes (sum of
ethanal and acetal
expressed as ethanal)
(Range: 0.9 - 85.9 g/hL
@ 100% vol) | | | | |--|--|---|----------------------------|------------|-------------------------| | SOP PALC 0156 - The determination of cyclamic acid in non- alcoholic beverages by HPLC with UV detection **1 2 3 4 | Cyclamic Acid | 25 to 500 mg/l | Non-alcoholic
beverages | HPLC-UV | In-house test procedure | | and its precursors in | Cannabinoids (Δ°- Tetrahydrocannabinol (Δ°-THC), Δ°- Tetrahydrocannabinol (Δ°-THC), Δ°- Tetrahydrocannabinolic acid (Δ°-THCA), Δ°- Tetrahydrocannabivarin (Δ°-THCV), Cannabidiol (CBD), Cannabinolic acid (CBDA), Cannabidivarin (CBDV), Cannabidivarin (CBN), Cannabigerol (CBR), Cannabigerol (CBG), Cannabigerol (CBG), Cannabigerolic acid (CBGA), and Cannabichromene (CBC)) | Δ°-Tetrahydrocannabinol (Δ°-THC): 0.5 to 750 mg/kg Δ°-Tetrahydrocannabinol (Δ°-THC): 0.5 to 250 mg/kg Δ°- Tetrahydrocannabinolic acid (Δ°-THCA): 0.5 to 250 mg/kg Δ°- Tetrahydrocannabivarin (Δ°-THCV): 0.5 to 250 mg/kg Cannabidiol (CBD): 0.5 to 50000 mg/kg Cannabinolic acid (CBDA): 0.5 to 10000 mg/kg Cannabidivarin (CBDV): 0.5 to 350 mg/kg | Hemp oils and
CBD oils | UPLC-MS/MS | In-house test procedure | | | | Cannabinol (CBN): 0.5 to 250 mg/kg Cannabigerol (CBG): 0.5 to 300 mg/kg Cannabigerolic acid (CBGA): 0.5 to 250 mg/kg Cannabichromene (CBC): 0.5 - 1000 mg/kg | | | | |--|-----------------------------------|---|---|--------------------------------|---| | SOP PALC 0166 -
The determination of
hydrocyanic acid in
foods by ultra
performance liquid
chromatography with
fluorescence detection
**1 2 3 4 | Hydrocyanic Acid | Marzipan and Nougat: 5
to 100 mg/kg Fruit 0.5 to
10 mg/kg Alcoholic
Beverages: 2.5 to 50
mg/kg Apricot Kernels,
Nuts, Seeds, Cassava
Flour and Similar
matrices 2.0 to 2500
mg/kg | Marzipan and
Nougat, Fruit,
Alcoholic
Beverages,
Apricot Kernels,
Nuts, Seeds,
Cassava Flour
and Similar
matrices | UPLC/Fluorescence
detection | SOP PALC 0166 based
on I.S. EN 16160:2012,
Animal feeding stuffs -
Determination of
Hydrocyanic acid by
HPLC | | SOP PALC 0170 - The determination of Epigallocatechin-3- gallate (EGCG) in Food Supplements by HPLC with UV detection **1 2 3 4 | Epigallocatechin-3-gallate (EGCG) | 1,000 to 290,000 mg/kg | Food
Supplements | HPLC -UV | In-house procedure | | SOP PALC 0180 - The Determination of Glycyrrhizic Acid by High Performance Liquid
Chromatography with UV Detection **1234 | Glycyrrhizic Acid | 25 to 1000 mg/kg | Confectionery | HPLC-UV | In-house test procedure | | SOP PALC 0182 - The determination of Monacolin K in Food Supplements based on Rice fermented with Red Yeast Monascus purpureus by UPLC with UV | Monacolin K | 0.8 to 60 mg/g | Red Yeast Rice
Supplements | UPLC-UV | In-house test procedure | | | | | I | | T | |---|--|---|--|---------------------------|-------------------------| | Detection **1 2 3 4 | | | | | | | SOP PALC 0184 -The determination of Theobromine in non-alcoholic beverages by high performance liquid chromatography with UV/PDA detection **1234 | Theobromine | 5 to 200 mg/kg | Non-alcoholic
beverages | HPLC and PDA/UV detection | In-house test procedure | | SOP PALC 0185 - The determination of Quinine in alcoholic and non-alcoholic beverages by ultra performance liquid chromotography with fluorescence detection **1234 | Quinine | Alcoholic beverages: 10
to 400 mg/kg
Non-alcoholic beverages:
10 to 200 mg/kg | Alcoholic
beverages
Non-alcoholic
beverages | UPLC and
Fluorescence | In-house test procedure | | SOP PALC 0187 -
The determination of
Flavourings in
Foodstuffs by GC-MS
**1 2 3 4 | Beta Asarone,
Menthofuran, Pulegone,
Thujone | Beta Asarone 0.1 to 1.5
mg/kg, Menthofuran 15
to 150 mg/kg, Pulegone
15 to 120 mg/kg,
Thujone 1 to 10 mg/kg | Alcoholic
beverages | GC-MS | In-house test procedure | | | Estragole,
Methyl Eugenol,
Safrole | Estragole 0.7 to 20
mg/kg,
Methyl Eugenol 0.1 to 2
mg/kg,
Safrole 0.1 to 3 mg/kg | Non-alcoholic
beverages | GC-MS | In-house test procedure | | | Menthofuran
Pulegone | Chocolate: Menthofuran
20 to 150 mg/kg,
Pulegone 20 to 150
mg/kg | Chocolate, Mint
confectionery/
chewing gum | GC-MS | In-house test procedure | | | | Mint confectionery/
chewing gum:
Menthofuran10 to 1000
mg/kg, Pulegone 10 to
1000 mg/kg | | | | | | Methyl Eugenol,
Safrole | Methyl Eugenol 1 to 20
mg/kg,
Safrole 1 to 20 mg/kg | Soups and sauces | GC-MS | In-house test procedure | |--|---|---|---------------------------------------|-----------|-------------------------| | SOP PALC 0188 The
Determination of
Advantame in
Foodstuffs by Ultra
High performance
Liquid
Chromatography
**1234 | Advantame | 2-15 mg/kg | Food | UHPLC-PDA | In-house test procedure | | SOP PALC 0189 The determination of Teucrin A in alcoholic beverages by high performance liquid chromatography **1 2 3 4 | Teucrin A | 0.2 - 25 mg/kg | Alcoholic
beverages | HPLC | In-house test procedure | | The Determination of
Antioxidants in Food
by Gradient High
Performance Liquid
Chromatography | Antioxidants | 5 mg/kg - 40 mg/kg
(equivalent to 25-
200mg/kg expressed on
fat for a product with
20% fat) | Soup/Sauce | HPLC/PDA | SOP PALC0128 | | | | Unchanged | Food | HPLC/PDA | SOP PALC0128 | | The determination of aspartame, acesulfame-K and saccharin in selected foodstuffs by ultra performance liquid chromatography | Aspartame, Acesulfame-
K and Saccharin | Aspartame: 80-800 mg/kg Acesulfame K: 40-400 mg/kg Saccharin: 20-200 mg/kg□ | Total Diet
Replacement
Products | UPLC/PDA | SOP PALC0054 | | The determination of
benzoic acid and
sorbic acid in foods by
steam distillation and
high performance
liquid chromatography | Sorbic acid | Sorbic Acid : 10 – 4000
mg/L | Food | HPLC/PDA | SOP PALC0009 | | The determination of benzoic acid and | Benzoic acid and Sorbic acid | Unchanged | Food | HPLC/PDA | SOP PALC0009 | | | 4 | | | | | |--|--|-----------------|--|----------------------------------|---------------| | sorbic acid in foods by
steam distillation and
high performance
liquid chromatography | | | | | | | The determination of benzoic acid and sorbic acid in non-alcoholic beverages by high performance liquid chromatography | | 10 – 1,000 mg/L | Non-alcoholic
beverages | HPLC/PDA | SOP PALC0008 | | | | Unchanged | Non-alcoholic beverages | HPLC/PDA | SOP PALC0008 | | The determination of caffeine in foodstuffs by high performance liquid chromatography & uv detection | Caffeine | Unchanged | Food | HPLC/PDA | SOP PALC0025 | | The determination of Flavourings in Foodstuffs by GC-MS | Flavourings | Unchanged | Food | GC-MS | SOP PALC0187 | | The determination of hydrocyanic acid in foods by ultra performance liquid chromatography with fluorescence detection | Hydrocyanic acid | LOQ 2.0 mg/kg | Cassava Flour,
Linseed, Nuts
and Similar
matrices | UHPLC/ fluorescence
detection | SOP PALC 0166 | | The determination of steviol glycosides (Rebaudioside A & Stevioside) in flavoured drinks by gradient high performance liquid chromatography with UV detection | Steviol glycosides
(Rebaudioside A &
Stevioside) | Unchanged | Food | HPLC/PDA | SOP PALC0135 | | The determination of sucralose by HPLC and RI detection | Sucralose | 40 – 400 mg/kg | Total Diet
Replacement
Products | HPLC/ RI detection | SOP PALC0026 | | | | Unchanged | Food | HPLC/RI | SOP PALC0026 | | | The Determination of Taurine in Infant Formula and Follow-On Formula by High Performance Liquid Chromatography with UV Detection The determination of Teucrin A in alcoholic beverages by high performance liquid chromatography | Taurine Teucrin A | Unchanged | Food Alcoholic beverages | HPLC/PDA HPLC/PDA | SOP PALC0138 SOP PALC0189 | |----------------------------------|---|-------------------|---|--|--------------------|----------------------------| | 751 Food testing05
Speciation | • | Inorganic Arsenic | Rice: 0.03-1.00 mg/kg. Rice Products, Cheese and Seaweed products: 0.04 to 1.00 mg/kg. Bread: 0.01-1.00 mg/kg. Fish and seafood: 0.008- 0.500 mg/kg. Milk: 0.01-0.30 mg/kg. Fruit and vegetable juices: 0.008-0.300 mg/kg. Seaweed: 0.02-100 mg/kg. Baby food and infant formulae powder: 0.008- 0.200 mg/kg. Infant formula liquid: 0.004-0.200 mg/kg. Seaweed Food Additives: 0.01-1.00 mg/kg | Rice, Rice
products,
Cheese and
Seaweed,
Bread, Fish and
seafood, Milk,
Fruit and
vegetable
juices,
Seaweed, Baby
food and infant
formulae
powder, Infant
formula liquid,
Seaweed Food
Additives. | HPLC-ICP-MS | In-house test procedure | | | SOP PALC 0176 -
The determination of
methylmercury in food
by HPLC-ICPMS **1 2
3 4 | Methylmercury | Fish: 0.04 to 5.50 mg/kg
Seafood: 0.04-5.00
mg/kg | Fish
Seafood | HPLC-ICP-MS | In-house test procedure | | | The determination of inorganic arsenic species in food extracted with | Inorganic arsenic | 0.008 - 0.300 mg/kg | Fruit Juice | HPLC/ICP-MS | SOP PALC0158 | | | acid/peroxide by
HPLC/ICPMS | | | | | | |---|--|--------|---|--|---------------------|-------------------------| | | | | 0.008 - 0.500 mg/kg | Fish and
Seafood | HPLC/ICP-MS | SOP PALC0158 | | | | | 0.01 - 1.00 mg/kg | Seaweed Food
Additives | HPLC/ICP-MS | SOP PALC0158 | | | | | Baby food and Infant
Formulae Powder: 0.008
- 0.200 mg/kg
Liquid Infant Formulae:
0.004 - 0.200 mg/kg | Baby food and
Infant Formulae
Powder and
Liquid | HPLC/ICP-MS | SOP PALC0158 | | | | | Rice: 0.03 - 1.00 mg/kg | Rice | HPLC/ICP-MS | SOP PALC0158 | | 752 Chemical residue testing02 Elements | | Lead | 2.0 to 50.0 μg/100ml | Whole blood | Graphite furnace AA | In-house test procedure | | | SOP PALC 0099 - The determination of copper in plasma and serum by flame atomic absorption spectrophotometry **1 2 3 4 | Copper | 25 to 250 μg/100ml | Serum, Plasma | Flame AAS | In-house test procedure | | | SOP PALC 0101 - The determination of zinc in plasma and serum by flame atomic absorption spectrophotometry **1 2 3 4 | Zinc | 25 to 250 μg/100ml | Plasma, Serum | Flame AAS | In-house test procedure | | | SOP PALC 0104 -
The determination of
copper in urine by
flame
atomic
absorption | Copper | 10 to 400 μg/l | Urine | Flame AAS | In-house test procedure | | spectrophotometry **1 2 3 4 | | | | | | |---|-----------|---------------------|---------------|----------------------|-------------------------| | SOP PALC 0132 - The determination of manganese in whole blood by Graphite Furnace Atomic Absorption Spectrophotometry **1 2 3 4 | Manganese | 4.3 to 37.7 μg/l | Blood | Graphite furnace AAS | In-house test procedure | | SOP PALC 0141 - The determination of Copper, Selenium and Zinc in Plasma and Serum by Inductively Coupled Plasma- Mass Spectrometry **1 2 3 4 | Copper | 25 to 250 μg/100 ml | Plasma, Serum | ICP-MS | In-house test procedure | | SOP PALC 0141 - The determination of Copper, Selenium and Zinc in Plasma and Serum by Inductively Coupled Plasma- Mass Spectrometry **1 2 3 4 | Selenium | 25 to 250 μg/l | Plasma, Serum | ICP-MS | In-house test procedure | | SOP PALC 0141 - The determination of Copper, Selenium and Zinc in Plasma and Serum by Inductively Coupled Plasma- Mass Spectrometry **1 2 3 4 | Zinc | 25 to 250 μg/100ml | Plasma, Serum | ICP-MS | In-house test procedure | | SOP PALC 0147 The determination of manganese, mercury, lead, chromium and cobalt in whole blood by inductively coupled | Manganese | 2.5 to 400 μg/l | Whole Blood | ICP-MS | In-house test procedure | | _ | | | 4 | - | | | | |---|--|---|-------------|--|--|---|-------------------------| | | | plasma mass
spectrometry
**1 2 3 4 | | | | | | | | | SOP PALC 0147 - The determination of manganese, mercury, lead, chromium and cobalt in whole blood by inductively coupled plasma mass spectrometry **1 2 3 4 | Lead | 1.0 - 80 μg/100ml | Whole Blood | ICP-MS | In-house test procedure | | | | | Mercury | 1.0 to 40 µg/l | Whole Blood | ICP-MS | In-house test procedure | | t | 752 Chemical residue
esting03
Mycotoxins | The determination of ochratoxin A in foodstuffs by immunoaffinity column extraction and high performance liquid chromatography (HPLC) with fluorescence detection **1 2 3 4 | | Cereals, Coffee, Dried fruit, Paprika, Chocolate, Chilli, Liquorice, Black/White pepper, Nutmeg, Ginger, Turmeric, Mixed spices, Cocoa, Rice, Green Coffee, Sunflower seeds, Oregano, Cumin, Tea (Herbal, Black), Pumpkin Seeds: 1 to 60 µg/kg Baby foods 0.2 to 30 µg/kg Red/White grape juice and Red/White wine, Sparkling and rose wine: 0.2 to 6 µg/l Beer 0.2 to 3 µg/l | fruits, Wine, Beer, Coffee, Baby food, Liquorice, Spices, Grape juice, Chocolate, Cocoa, Rice, Rose and sparkling wine, Green coffee, Sunflower seeds, Oregano, Cumin, Tea (Herbal, Black), Pumpkin Seeds. | extraction and HPLC with fluorescence detection | In-house test procedure | | | | SOP PALC 0022 - The determination of zearalenone in cereals, baby food, and maize oil by immunoaffinity column extraction and HPLC with fluorescence | Zearalenone | Cereals: 20 to 400 µg/kg
Cereal-based baby
foods: 20 to 400 µg/kg
Maize Oil: 20 to 1,000
µg/kg | based baby | Immunoaffinity column extraction and HPLC with fluorescence detection | In-house test procedure | | detection
**1 2 3 4 | | | | | | |--|--|---|---|---|-------------------------| | SOP PALC 0031 - The determination of aflatoxins in food by Immunoaffinity Column Extraction, and High Performance Liquid Chromatography **1 2 3 4 | Aflatoxins B1, B2, G1 and G2 | Cereals, seeds, nut products, dried fruit and dried fruit products: Individually 0.2 to 20.0 µg/kg *Total Aflatoxins: 0 to 80 µg/kg Shelled nuts Individually 0.2 to 25.0 µg/kg *Total Aflatoxins 0 to 100.0 µg/kg Nuts and groundnuts in shell Individually 0.2 to 40.0 µg/kg *Total Aflatoxins 0 to 160 µg/kg Spices Individually 0.2 to 40.0 µg/kg *Total Aflatoxins 0 to 160 µg/kg Chocolate: 1.0 to 20 µg/kg *Total Aflatoxins 0 to 80 µg/kg Baby foods 0.05 to 20µg/kg (B1 only) | Cereals, nut products, dried fruit and dried fruit products, shelled nuts, nuts, groundnuts, spices, seeds, baby foods and chocolate. | Immunoaffinity column extraction and HPLC-FLD | In-house test procedure | | SOP PALC 0045 - The determination of patulin in apple products, juices and smoothies and ciders by SPE extraction and quantification by UPLC with ultraviolet or tandem mass spectrometric detection **1 2 3 4 | Patulin | SOP PALC 0045 A:
10 - 200 µg/kg - Apple
juices, apple smoothies
SOP PALC 0045 B: 10 -
250 µg/kg - Ciders, 5 –
25 µg/kg - Baby foods | Non-alcoholic
beverages
Apple Juice
Apple
smoothies
Alcoholic
beverages
Ciders
Others
- Baby foods | UPLC with UV or
MS/MS detection | In-house test procedure | | SOP PALC 0074 -
The determination of | T-2 and HT-2 toxins
Sum of T-2 and HT-2 | Cereals, animal feed:
T-2: 4 to 800 µg/kg | Cereals, animal feed, baby food | UPLC-MS/MS | In-house test procedure | | T-2 and HT-2 toxins in
cereals, animal feed
and baby food by
UPLC-MS/MS
**1 2 3 4 | | HT-2: 4 to 800 μg/kg *Sum of T-2 and HT-2 0 to 1,600 μg/kg Baby food: T-2: 1 to 20 μg/kg HT-2: 1 to 20 μg/kg *Sum of T-2 and HT-2 0 to 40 μg/kg (*Note: based on lower bound calculation) | | | | |--|---|---|--|--|-------------------------| | SOP PALC 0076 - The determination of fumonisins B1, B2 and B3 in cereals and cereal products by immunoaffinity column extraction and high performance liquid chromatography (HPLC) **1 2 3 4 | | Fumonisin B1: 50 to 7780 µg/kg Fumonisin B2: 50 to 8010 µg/kg Fumonisin B3: 50 to 400 µg/kg *Total Fumonisins: 0 to 16,190 µg/kg (*Note: based on lower bound calculation) | Cereal-based
foods and
baby foods | Immunoaffinity column
extraction and HPLC
with fluorescence
detection | In-house test procedure | | SOP PALC 0077 - The determination of aflatoxin M1 in milk and milk powder by HPLC and fluorescence detection **1 2 3 4 | Aflatoxin M1 | Milk: 0.025 to 0.33 µg/l
Milk powder: 0.02 to 0.75
µg/kg | Milk, milk
powder | Immunoaffinity column
extraction and HPLC
with fluorescence
detection | In-house test procedure | | SOP PALC 0081 - The determination of deoxynivalenol in cereal, pasta and baby food products by immunoaffinity column extraction and high performance liquid chromatography (HPLC) **1 2 3 4 | Deoxynivalenol | 50 to 4,000 μg/kg | Cereals, cereal
based baby
food, pasta | Immunoaffinity column
extraction and HPLC
with fluorescence
detection | In-house test procedure | | SOP PALC 0157 -
The determination of
type A and B | Trichothecenes:
Diacetoxyscirpenol
(DAS), 3-Acetyl- | Diacetoxyscirpenol: 10.0 to 250.0 μg/kg, | Cereals | UPLC-MS/MS | In-house test procedure | | The determination ochratoxin A in foodstuffs by immunoaffinity colu | ion AcDÓN), Deoxynivaleno (DON), Sterigmatocyste in (STC), T-2 toxin, HT-2 toxin , Sum of T-2 and HT-2 | 3-Acetyl-deoxynivalenol: 10.0 to 250.0 μg/kg, 15-Acetyl-deoxynivalenol: 10.0 to 250.0 μg/kg, Deoxynivalenol: 50.0 to 2000.0 μg/kg, Sterigmatocystein: 5.0 - 125.0 μg/kg, T-2 toxin: 10.0 to 1000.0 μg/kg, *Sum of T-2 and HT-2 toxins: 0.0 to 2000.0 μg/kg (*Note: based on lower bound calculations) 1–100 μg/kg | Oregano | HPLC/FLD | SOP PALC 0018 | |--|--
---|-----------------------|----------|------------------------------------| | extraction and high
performance liquid
chromatography
(HPLC) with
fluorescence detec | ion | 1–60 μg/kg | Cumin | HPLC/FLD | SOP PALC 0018 | | | | | | | | | | | 1–60 μg/kg | <u>'</u> | | SOP PALC 0018 | | | | 1–60 μg/kg | Sunflower
Seeds | HPLC/FLD | SOP PALC 0018 | | | | 1–60 μg/kg | Tea: Herbal,
Black | HPLC/FLD | SOP PALC 0018 | | 752 Chemical residue testing05 Organic contaminants Determination of factoristics acids in food by GC FID | | Unchanged | Food | GC-FID | SOP PALC 0161 and
SOP PALC 0162 | | SOP PALC 0032 -
The determination of
Acrylamide in food **1
2 3 4 | Acrylamide | 20 to 2500 μg/kg | Food | GC-MS | In-house test procedure
based on Castle, L.,
Determination of
Acrylamide Monomer in
Mushrooms Grown on
Polyacrylamide Gel. J.
Agric. Food Chem. 1993,
41, 1261–1263. | |---|--|---|---|-----------------|--| | SOP PALC 0041 - The Determination of Furan and Certain Analogues in Foods by Headspace GC-MS **1 2 3 4 | Furan, 2-methylfuran, 3-methylfuran, 2-ethylfuran, 2,5-dimethylfuran | Food including brewed coffee (µg/kg or ug/L) Furan 5 to 10000 2-methylfuran 0.8 to 310 3-methylfuran 0.8 to 210 Coffee (µg/kg) Furan 5 to 10000 2-methylfuran 11.5 to 55000 3-methylfuran 1 to 3500 2-ethylfuran 0.5 to 3500 2,5-dimethylfuran 1 to 3500 | Food
Coffee | Headspace GC-MS | In-house test procedure based on U.S. Food and Drug Administration (US FDA) Centre for Food Safety and Applies Nutrition (CFSAN) Determination of furan in foods May 7 2004 http://www.cfsan.fda.gov/~dms/furan.html | | SOP PALC 0075 -
The determination of
polycyclic aromatic
hydrocarbons in foods
by GC-MS **1 2 3 4 | Polycyclic aromatic hydrocarbons (PAHs): Cyclopenta[cd]pyrene Benz[a]anthracene Chrysene 5-Methylchrysene Benzo[b]fluoranthene Benzo[j]fluoranthene Benzo[k]fluoranthene | Meat and meat products, game and poultry: Smoked meat: Individual PAHs 0.9 to 20.0 µg/kg *Sum of PAH4 0 to 80.0 µg/kg Heat treated meat: | Meat and meat
products, game
and poultry
Smoked meat
Heat treated
meat
Fish, shellfish
and molluscs
Smoked fish | GC-MS | In-house test procedure | | | | | <u> </u> | |------------------------|--|-------------------------------|----------| | Benzo[a]pyrene | Individual PAHs 0.5 to | Fats and oils | | | Indeno[1,2,3-cd]pyrene | 25.0 μg/kg*Sum of PAH4 | Cereals and | | | Dibenzo[a,h]anthracene | 0 to 100.0 μg/kg | bakery products | | | Benzo[ghi]perylene | | - Flour | | | Dibenzo[a,l]pyrene | Fish, shellfish and | Herbs and | | | Dibenzo[a,e]pyrene | molluscs: | spices | | | Dibenzo[a,i]pyrene | Considered fight Individual | Cocoa and | | | Dibenzo[a,h]pyrene | Smoked fish: Individual PAHs 0.9 to 20.0 µg/kg | Cocoa | | | | *Sum of PAH4 0 to 80.0 | preparations, coffee, tea | | | | μg/kg | Raw beverages | | | | | Brewed | | | | Crustaceans: 0.5 µg/kg | beverages | | | | to 50 µg/kg. | Cocoa beans | | | | l so highing. | and derived | | | | Bivalve molluscs (fresh, | products | | | | chilled, frozen or | Foodstuffs | | | | smoked): 0.5 µg/kg to 50 | intended for | | | | μg/kg. | special | | | | L | nutritional uses | | | | Fats and oils: Individual | Infant formula | | | | PAHs 0.9 to 20.0 µg/kg | Baby foods | | | | *Sum of PAH4 0 to 80.0 | Food | | | | μg/kg | supplements,
Smoked cheese | | | | Cereals and bakery | Silloked Cileese | | | | products (Flour): | | | | | Individual PAHs 0.05 to 5 | | | | | μg/kg *Sum of PAH4 0 to | | | | | 20.00 µg/kg | | | | | | | | | | Herbs and spices: | | | | | Individual PAHs 0.9 to | | | | | 30.0 μg/kg*Sum of PAH4 | | | | | 0 to 120.0 μg/kg | | | | | Coope and Coope | | | | | Cocoa and Cocoa | | | | | preparations, coffee, tea Raw beverages: | | | | | Individual PAHs 1.0 to | | | | | 10.0 µg/kg *Sum of | | | | | PAH4 0 to 40.0 µg/kg | | | | | | | | | | Brewed beverages: | | | | | | Individual PAHs 0.2 to 2.0*Sum of PAH4 0 to 8.0 µg/kg | | | | |---|--|--|--------------------------|------------|-------------------------| | | | Cocoa beans and derived products: Individual PAHs 0.5 to 29.0 µg/kg fat *Sum of PAH4 0 to 116.0 µg/kg fat | | | | | | | Foodstuffs intended for
special nutritional uses
(Infant formula ,Baby
foods): Individual PAHs
0.2 to 10.0 µg/kg *Sum
of PAH4 0 to 40.0 µg/kg | | | | | | | Food Supplements:
Individual PAHs 0.9 to
200.0 µg/kg *Sum of
PAH4 0 to 800.0 µg/kg | | | | | | | Smoked cheese: 0.5 to
50 ug/kg for all PAHs
*Sum of PAH4 0 to 200.0
µg/kg | | | | | | | *Note: ranges for Sum
PAH4 based on lower
bound calculation | | | | | The determination of Ergot Alkaloids in cereals and cereal based products by UPLC-electrospray ionisation -tandem MS/MS **1 2 3 4 | Ergometrine, Ergometrinine, Ergosine, Ergosinine, Ergocornine, Ergocorninine, α-Ergocryptine, α-Ergocryptinine, Ergotamine, Ergotaminine, Ergocristine, Ergocristine, Ergocristinine | | Cereals, Cereal products | UPLC-MS/MS | In-house test procedure | | SOP PALC 0127 -
The determination of
3-monochloro
propane-1,2-diol in
food by GC-MS
**1 2 3 4 | 3-monochloropropane-
1,2-diol | 8.4 to 1000 μg/kg DM
(dry Matter) | Soy sauce and
hydrolysed
vegetable
protein (HVP) | GC-MS | In-house test procedure
based on I.S. EN
14573:2004
Foodstuffs -
Determination of 3-
Monochloropropane-1,2-
Diol by GC/MS | |--|--|---|--|-------------------|---| | and tropane alkaloids | Pyrrolizidine Alkaloids (PA): Echimidine (Em), Echimidine-N-oxide (Emox), Erucifoline-N-oxide (Erox), Erucifoline-N-oxide (Erox), Europine-N-oxide (Euox), Heliotrine (Ht), Heliotrine-N-oxide (Htox), Intermedine (Im), Intermedine-N-oxide (Imox), Jacobine (Jb), Jacobine-N-oxide (Jb-ox), Lasiocarpine (Lc), Lasiocarpine (Lc), Lasiocarpine-N-oxide (Lcox), Lycopsamine-N-oxide (Ly-ox), Monocrotaline (Mc), Monocrotaline (Mc), Monocrotaline (Rt-ox), Senkirkine (Sk), Senecionine (Sn), Senecionine (Sn), Seneciphylline (Sp), Seneciphylline-N-oxide (Sp-ox), Trichodesmine (Td), Sum of PAs Tropane Alkaloids: Atropine and Scopolamine | SOP PALC 0130 A Black tea: 10 to 900 µg/kg for each analyte *Sum of PAs: 0 to 23400 µg/kg SOP PALC 0130 B Cumin: 10 to 1200 µg/kg for each analyte *Sum of PAs: 0 to 31200 µg/kg (*Note: based on lower bound calculations) | Black tea,
Cumin | UPLC-MS/MS | In-house test procedure | | SOP PALC 0140 The determination of Monochloropropandiol Esters (MCPDE) and | | Liquid infant formula (IF)
and follow-on formula
(FOF): 2.0-130 µg/kg for
MCPDEs and 2.0-170 | Liquid and
powdered infant
formula (IF) and
follow-on | GC-MS or GC-MS/MS | In house test procedure
based on 1.1 AOCS
Official Method Cd 29a-
13 | | Glycidol Esters (GE)
by GC-MS or GC-
MS/MS
*1 2 3 4 | | μg/kg for GEs Powdered IF and FOF: 15-1300 μg/kg for MCPDEs and 15-1700 μg/kg for GEs Fats & Oils: 100-20000 μg/kg for MCPDEs and 100-20000 μg/kg for GEs Food: 6-1200 μg/kg | formula (FOF)
Food
Fats & Oils | | |
--|-------------|---|--|--------------------------|--| | SOP PALC 0161 -
The determination of
fatty acids in food for
infants and young
children, milk and milk
products **1 2 3 4 | Erucic Acid | Individual fatty acids: 0.1 to 100 % For erucic acid: 1 to 100 g/kg or 0.1% to 10% | Food for infants
and young
children, milk
and milk
products | GC-FID | In-house test procedure
based on National
Standard of the People's
Republic of China
GB 5413.27 - 2010 | | SOP PALC 0162 -
The determination of
fatty acids in oils and
fats and the oils and
fats extracted from
food. **1 2 3 4 | | 0.2 to 100 % for fatty
acids generally 2 to 100
g/kg fatty acids for erucic
acid | Oils and fats,
mustards and
the oils and fats
extracted from
food. | GC-FID | In-house test procedure
based on ISO 12966
parts 1 - 4 | | SOP PALC 0174 -
The determination of
acrylamide food by
LC-MS/MS **1 2 3 4 | Acrylamide | 20 to 750 μg/kg | Food | LC-MS/MS | In-house test procedure
based on ISO
16618:2015 | | SOP PALC 0178 Method for the official control of mineral oil aromatic hydrocarbons (MOAH) and mineral oil saturated hydrocarbons (MOSH) content in infant formula **1234 | | Infant formula: 1-
10mg/kg
Chocolate, Stock cubes:
1-100 mg/kg | Infant formula
Chocolate
Stock Cubes | LC-GC with FID detection | EURL-SOP yet to be published | | | MOSH-C10-50 | Infant formula: 5-
10mg/kg
Chocolate, Stock cubes:
3-300 mg/kg | Infant formula
Chocolate
Stock Cubes | LC-GC with FID detection | EURL-SOP yet to be published | | | SOP PALC 0186 -
The determination of
monochloro propane-
1,2-diols in food by
GC-MS or GC-MS/MS
**1234 | 2-MCPD
3-MCPD | 2- and 3-MCPD: 1 to 200 µg/kg for liquid infant formula and follow-on formula 2- and 3-MCPD: 5 to 200 µg/kg for powder infant formula and follow-on formula 2- and 3-MCPD: 25 to 1000 µg/kg for oils and fats 2- and 3-MCPD: 5 to 500 µg/kg for general food | Liquid infant
formula and
follow-on
formula
Powder infant
formula and
follow-on
formula
Oil and fats
General food | | In house test procedure. The method has been tested and validated at the EU Reference Laboratory for Processing Contaminants. | |--|--|--|--|--|--|---| | | SOP PALC 0193 -
The determination of
Glycoalkaloids in
potato and potato
products by UPLC-
MS/MS **1234 | Glycoalkaloids: α-
solanine, α-chaconine,
solanidine | 1 - 100 mg/kg | Food | LC-MS/MS | In-house test procedure | | 766 Environmental testing (inc waters)05 Inorganic | SOP PALCW 0005 -
The determination of
anions in
aqueous samples by
reagent free ion
chromatography
**1 2 3 4 | Fluoride | Waters for potable and
domestic purposes:
Fluoride 0.10 to 1.75
mg/l Misc Materials and
Products Fluoride 10.9%
HFSA solution | Waters for potable and domestic purposes Misc. Materials and products | By reagent free ion
chromatography
(RFIC) | In-house test procedure | | | SOP PALCW 0006 -
The determination of
metals in
aqueous samples by
inductively
coupled plasma/mass
spectrometry
(ICP-MS)
**1 2 3 4 | Total metals | Waters for potable and domestic purposes: Chromium 4 to 80 Cr µg/l Cadmium 1 to 40 µg/l Lead 2 to 40 µg/l Nickel 2 to 40 µg/l Copper 0.1 to 2.0 mg/l Sodium 2 to 200 mg/l Calcium 2 to 40 mg/l Potassium 0.10 to 2.0 mg/l Magnesium 0.10 to 2.0 mg/l Aluminium 20 to 400 µg/l Arsenic 2 to 40 µg/l Selenium 2 to 40 µg/l Manganese 10 to 400 µg/l Boron 100 to | Waters for potable and domestic purposes Misc Materials and products | By inductively coupled plasma/mass spectrometry (ICP-MS) | In-house test procedure | | | | 2000 μg/l Iron 20 to 750 μg/l Zinc 20 to 400 μg/l Misc Materials and Products: Antimony 40 to 9250 μg/l Arsenic 40 to 46200 μg/l Chromium 40 to 4630 μg/l Chromium 40 to 46200 μg/l Lead 40 to 46200 μg/l Nickel 40 to 46200 μg/l Selenium 40 to 9250 μg/l | | | | |--|--------------|---|--|--|-------------------------| | SOP PALCW 0019 -
The measurement of
conductivity of waters
for potable and
domestic
purposes
**1 2 3 4 | Conductivity | 20 to 1270 μS/cm at
20°C | Waters for potable and domestic purposes | Jenway conductivity meter | In-house test procedure | | SOP PALCW 0020 -
The measurement of
turbidity in waters for
potable and domestic
purposes
**1 2 3 4 | Turbidity | (NTU) 0.5 to 400 | Waters for potable and domestic purposes | Hach Turbidimeter | In-house test procedure | | SOP PALCW 0021 -
The determination of
analytes in water
samples by
photometric analysis
**1 2 3 4 | Nutrients | Ammonium (as NH4) 0.07 to 1.15mg/l Chloride (Cl) 10 to 250mg/l Nitrite (NO2) 0.164 to 1.313mg/l Nitrate (NO3) 6.64 to 50.91mg/l Sulphate (SO4) 8 to 250mg/l Alkalinity (HCO3) 50 to 300mg/l Total Hardness (CaCO3) 50 to 300mg/l Colour (Pt-Co units) 10 to 90 mg/l | domestic | Using Thermoscientific
Aquakem
250 discrete analyser | In-house test procedure | | SOP PALCW 0022 -
The measurement of
pH of waters for
potable and domestic
purposes
**1 2 3 4 | рН | pH 4 to 10 | Waters for potable and domestic purposes | Jenway pH meter | In-house test procedure | | | SOP PALCW 0023 - The determination of mercury in aqueous samples by cold vapour atomic absorption spectrophotometry **1 2 3 4 | Mercury | Waters for potable and domestic purposes = 0.3 to 5.0 µg/l Misc. Material and Products = 100 to 1200 µg/l | Waters for
potable and
domestic
purposes
Misc. Materials
and products | By Cold Vapour
Atomic Absorption
spectrophotometry | In-house test procedure | |--|--|------------------|---|--|--|-------------------------| | 767 Physical test/measurement01 pH | SOP PALC 0115 -
The determination of
the pH and free acidity
of honey by titration to
pH 8.30 or
equivalence point
**1 2 3 4 | pH and Acidity | pH: 3.5 to 8.0 pH units
Acidity: 5 to 50 mEq/kg | Honey | Autotitrator and pH meter | In-house test procedure | | | SOP PALC 0160 -
The determination of
the pH of soft drinks,
energy drinks and fruit
juices
**1 2 3 4 | рН | 2.00 to 5.00 pH units | Non alcoholic
beverages
(Drinks and
juices) | pH Meter | In-house test procedure | | 767 Physical test/measurement02 Conductivity | SOP PALC 0114 -
The determination of
the electrical
conductivity of honey
and vodka
**1 2 3 4 | Conductivity | Honey: 0.1 to 1.6 mS/cm
Vodka: 7 to 200 μS/cm | Honey, Vodka | Conductivity Meter | In-house test procedure | | 767 Physical
test/measurement -
.03 Suspended Solids | SOP PALC 0118 -
The determination of
insoluble matter in
honey
**1 2 3 4 | Insoluble matter | 0.01 to 0.11 g/100 g | Honey | Gravimetric
Determination | In-house test procedure | The laboratory has been awarded flexible scope in the scope classifications as noted in the scope document and in accordance with the laboratories approved and documented procedures. Note 1 - Range may be extended for the test Note 2 – New parameters / tests may be added Note 3 – New matrices may be added Note 4 – Changes to equipment / kits where the underlying methodology does not change For further details please refer to the laboratories 'Master list of Flexible scope changes', available directly from the laboratory.